Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions

著者

    • Bejenaru, Ioan
    • Tataru, Daniel

書誌事項

Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions

Ioan Bejenaru, Daniel Tataru

(Memoirs of the American Mathematical Society, no. 1069)

American Mathematical Society, c2013

タイトル別名

Near soliton evolution for equivariant Schroedinger maps in two spatial dimensions

大学図書館所蔵 件 / 11

この図書・雑誌をさがす

注記

"March 2014, volume 228, number 1069 (first of 5 numbers)."

Includes bibliographical references (p. 107-108)

内容説明・目次

内容説明

The authors consider the Schrödinger Map equation in 2 1 dimensions, with values into S². This admits a lowest energy steady state Q , namely the stereographic projection, which extends to a two dimensional family of steady states by scaling and rotation. The authors prove that Q is unstable in the energy space ?¹. However, in the process of proving this they also show that within the equivariant class Q is stable in a stronger topology XC?¹.

目次

  • Introduction An outline of the paper The Coulomb gauge representation of the equation Spectral analysis for the operators H, H ~
  • the X,LX spaces The linear H ~ Schrödinger equation The time dependent linear evolution Analysis of the gauge elements in X,LX The nonlinear equation for ? The bootstrap estimate for the ? parameter The bootstrap argument The ?¹ instability result Bibliography

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ