Spectra of symmetrized shuffling operators

著者

書誌事項

Spectra of symmetrized shuffling operators

Victor Reiner, Franco Saliola, Volkmar Welker

(Memoirs of the American Mathematical Society, no. 1072)

American Mathematical Society, c2013

大学図書館所蔵 件 / 10

この図書・雑誌をさがす

注記

"March 2014, volume 228, number 1072 (fourth of 5 numbers)."

Includes bibliographical references (p. 99-102) and index

内容説明・目次

内容説明

For a finite real reflection group W and a W -orbit O of flats in its reflection arrangement - or equivalently a conjugacy class of its parabolic subgroups - the authors introduce a statistic noninv O (w) on w in W that counts the number of ""O -noninversions"" of w . This generalises the classical (non-)inversion statistic for permutations w in the symmetric group S n. The authors then study the operator ? O of right-multiplication within the group algebra CW by the element that has noninv O (w) as its coefficient on w.

目次

Introduction Defining the operators The case where O contains only hyperplanes Equivariant theory of BHR random walks The family ? (2 k ,1 n?2k) The original family ? (k,1 n?k) Acknowledgements Appendix A. G n -module decomposition of ? (k,1 n?k) Bibliography List of Symbols Index

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ