Lattice theory : special topics and applications
著者
書誌事項
Lattice theory : special topics and applications
Birkhäuser , Springer, c2014-
- v. 1 : [pbk]
- v. 2 : [pbk]
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
-
v. 1 : [pbk]P 014/LATT/1-1033212014003826,
v. 2 : [pbk]P 016/LATT/1-2033212016005898
注記
Bibliography: v. 1: p. 437-460 ; v. 2: p. 563-597
内容説明・目次
- 巻冊次
-
v. 1 : [pbk] ISBN 9783319064123
内容説明
George Gratzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Gratzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Gratzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich Wehrung and George Gratzer.
目次
Introduction. Part I Topology and Lattices.- Chapter 1. Continuous and Completely Distributive Lattices.- Chapter 2. Frames: Topology Without Points.- Part II. Special Classes of Finite Lattices.- Chapter 3. Planar Semi modular Lattices: Structure and Diagram.- Chapter 4. Planar Semi modular Lattices: Congruences.- Chapter 5. Sectionally Complemented Lattices.- Chapter 6. Combinatorics in finite lattices.- Part III. Congruence Lattices of Infinite Lattices and Beyond.- Chapter 7. Schmidt and Pudlak's Approaches to CLP.- Chapter 8. Congruences of lattices and ideals of rings.- Chapter 9. Liftable and Unliftable Diagrams.- Chapter 10. Two topics related to congruence lattices of lattices.
- 巻冊次
-
v. 2 : [pbk] ISBN 9783319442358
内容説明
George Gratzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Gratzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person.
So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, in two volumes, written by a distinguished group of experts, to cover some of the vast areas not in Foundation.
This second volume is divided into ten chapters contributed by K. Adaricheva, N. Caspard, R. Freese, P. Jipsen, J.B. Nation, N. Reading, H. Rose, L. Santocanale, and F. Wehrung.
目次
Varieties of Lattices.- Free and Finitely Presented Lattices.- Classes of Semidistributive Lattices.- Lattices of Algebraic Subsets and Implicational Classes.- Convex Geometries.- Bases of Closure Systems.- Permutohedra and Associahedra.- Generalizations of the Permutohedron.- Lattice Theory of the Poset of Regions.- Finite Coxeter Groups and the Weak Order.
「Nielsen BookData」 より