Lectures on the Riemann zeta function
著者
書誌事項
Lectures on the Riemann zeta function
(University lecture series, v. 62)
American Mathematical Society, c2014
大学図書館所蔵 全34件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 117) and index
内容説明・目次
内容説明
The Riemann zeta function was introduced by L. Euler (1737) in connection with questions about the distribution of prime numbers. Later, B. Riemann (1859) derived deeper results about the prime numbers by considering the zeta function in the complex variable. The famous Riemann Hypothesis, asserting that all of the non-trivial zeros of zeta are on a critical line in the complex plane, is one of the most important unsolved problems in modern mathematics.
The present book consists of two parts. The first part covers classical material about the zeros of the Riemann zeta function with applications to the distribution of prime numbers, including those made by Riemann himself, F. Carlson, and Hardy-Littlewood. The second part gives a complete presentation of Levinson's method for zeros on the critical line, which allows one to prove, in particular, that more than one-third of non-trivial zeros of zeta are on the critical line. This approach and some results concerning integrals of Dirichlet polynomials are new. There are also technical lemmas which can be useful in a broader context.
目次
Classical topics
Panorama of arithmetic functions
Sums of basic arithmetic functions
Tchebyshev's prime seeds
Elementary prime number theorem
The Riemann memoir
The analytic continuation
The functional equation
The product formula over the zeros
The asymptotic formula for N(T)
The asymptotic formula for ?(x)
The zero-free region and the PNT
Approximate functional equations
The Dirichlet polynomials
Zeros off the critical line
Zeros on the critical line
The critical zeros after Levinson
Introduction
Detecting critical zeros
Conrey's construction
The argument variations
Attaching a mollifier
The Littlewood lemma
The principal inequality
Positive proportion of the critical zeros
The first moment of Dirichlet polynomials
The second moment of Dirichlet polynomials
The diagonal terms
The off-diagonal terms
Conclusion
Computations and the optimal mollifier
Smooth bump functions
The gamma function
Bibliography
Index
「Nielsen BookData」 より