The global approach to quantum field theory
Author(s)
Bibliographic Information
The global approach to quantum field theory
(The international series of monographs on physics, 114)
Clarendon Press, 2014, c2003
- : set
- v. 1 : pbk
- v. 2 : pbk
Available at 5 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
v. 1 : pbk421.3||D-2||1-2-1006076978,
v. 2 : pbk421.3||D-2||1-2-2006076979 -
Science and Technology Library, Kyushu University
v. 1 : pbk421.3/D 67010212014002256,
v. 2 : pbk421.3/D 67010212014002268 -
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science図書
v. 1 : pbk530.14/W7832080423138,
v. 2 : pbk530.14/W7832080423140
Note
"First published paperback 2014"--T. p. verso
Includes bibliographical references and index
Description and Table of Contents
Description
The book shows how classical field theory, quantum mechanics, and quantum field theory are related. The
description is global from the outset. Quantization is explained using the Peierls bracket rather than the Poisson bracket. This allows one to deal immediately with observables, bypassing the canonical formalism of constrained Hamiltonian systems and bigger-than-physical Hilbert (or Fock) spaces. The Peierls bracket leads directly to the Schwinger variational principle and the Feynman functional integral, the latter of which is taken as defining the quantum theory.
Also included are the theory of tree amplitudes and conservation laws, which are presented classically and later extended to the quantum level. The quantum theory is developed from the many-worlds viewpoint, and ordinary path integrals and the topological issues to which they give rise are studied in some detail. The theory of mode functions and Bogoliubov coefficients for linear fields is fully developed, and then the quantum theory of nonlinear fields is confronted. The effective action,
correlation functions and counter terms all make their appearance at this point, and the S-matrix is constructed via the introduction of asymptotic fields and the LSZ theorem. Gauge theories and ghosts are studied in great detail.
Many applications of the formalism are given: vacuum currents, anomalies, black holes, fourth-order systems, higher spin fields, the (lambda phi) to the fourth power model (and spontaneous symmetry breaking), quantum electrodynamics, the Yang-Mills field and its topology, the gravitational field, etc. Special chapters are devoted to Euclideanization and renormalization, space and time inversion, and the closed-time-path or "in-in" formalism. Emphasis is given throughout to the role of the
functional-integral measure in the theory. Six helpful appendices, ranging from superanalysis to analytic continuation in dimension, are included at the end.
Table of Contents
- I: CLASSICAL DYNAMICAL THEORY
- II: THE HEURISTIC ROAD TO QUANTIZATION. THE QUANTUM FORMALISM AND ITS INTERPRETATION
- III: EVALUATION AND APPROXIMATION OF FEYNMAN FUNCTIONAL INTEGRALS
- IV: LINEAR SYSTEMS
- V: NONLINEAR FIELDS
- VI: TOOLS FOR QUANTUM FIELD THEORY. APPLICATIONS
- VII: SPECIAL TOPICS
- VIII: EXAMPLES. SIMPLE EXERCISES IN THE USE OF THE GLOBAL FORMALISM
by "Nielsen BookData"