Mathematical logic : foundations for information science
Author(s)
Bibliographic Information
Mathematical logic : foundations for information science
(Progress in computer science and applied logic, v. 25)
Birkhäuser , Springer, c2014
2nd rev. ed
- Other Title
-
数理逻辑 : 基本原理与形式演算
Available at 7 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
English version based on: 数理逻辑 : 基本原理与形式演算. Beijing, : Science Press, 2007
Includes bibliographical references (p. 293-295) and index
Description and Table of Contents
Description
Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Goedel's theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage.
The second edition of the book includes major revisions on the proof of the completeness theorem of the Gentzen system and new contents on the logic of scientific discovery, R-calculus without cut, and the operational semantics of program debugging.
This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.
Table of Contents
Preface.- Preface to the Second Edition.- I Elements of Mathematical Logic.- 1 Syntax of First-Order Languages.- 2 Models of First-Order Languages.- 3 Formal Inference Systems.- 4 Computability & Representability.- 5 Goedel Theorems.- II Logical Framework of Scientific Discovery.- 6 Sequences of Formal Theories.- 7 Revision Calculus.- 8 Version Sequences.- 9 Inductive Inference.- 10 Meta-Language Environments.- Appendix 1 Sets and Maps.- Appendix 2 Proof of the Representability Theorem.- Bibliography.- Index.
by "Nielsen BookData"