Error estimates for well-balanced schemes on simple balance laws : one-dimensional position-dependent models

著者

書誌事項

Error estimates for well-balanced schemes on simple balance laws : one-dimensional position-dependent models

Debora Amadori, Laurent Gosse

(SpringerBriefs in mathematics, . BCAM SpringerBriefs)

Springer, c2015

  • : [pbk.]

大学図書館所蔵 件 / 2

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numerical schemes solving 1D hyperbolic systems of balance laws. Rigorous error estimates are presented for both scalar balance laws and a position-dependent relaxation system, in inertial approximation. Such estimates shed light on why those algorithms based on source terms handled like "local scatterers" can outperform other, more standard, numerical schemes. Two-dimensional Riemann problems for the linear wave equation are also solved, with discussion of the issues raised relating to the treatment of 2D balance laws. All of the material provided in this book is highly relevant for the understanding of well-balanced schemes and will contribute to future improvements.

目次

1 Introduction.- 2 Local and global error estimates.- 3 Position-dependent scalar balance laws.- 4 Lyapunov functional for inertial approximations.- 5 Entropy dissipation and comparison with Lyapunov estimates.- 6 Conclusion and outlook.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB20121858
  • ISBN
    • 9783319247847
  • LCCN
    2015953000
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xv, 110 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ