Isogeometric analysis and applications 2014
著者
書誌事項
Isogeometric analysis and applications 2014
(Lecture notes in computational science and engineering, 107)
Springer, c2015
大学図書館所蔵 件 / 全3件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references
内容説明・目次
内容説明
Isogeometric Analysis is a groundbreaking computational approach that promises the possibility of integrating the finite element method into conventional spline-based CAD design tools. It thus bridges the gap between numerical analysis and geometry, and moreover it allows to tackle new cutting edge applications at the frontiers of research in science and engineering. This proceedings volume contains a selection of outstanding research papers presented at the second International Workshop on Isogeometric Analysis and Applications, held at Annweiler, Germany, in April 2014.
目次
Preface.- Foreword.- U. Langer, A. Mantzaflaris, S.E. Moore, I. Toulopoulos: Multipatch Discontinuous Galerkin Isogeometric Analysis.- E. Brivadis, A. Buffa, B. Wohlmuth, L. Wunderlich: The Influence of Quadrature Errors on Isogeometric Mortar Methods.- M. Pauley, D.-M. Nguyen, D. Mayer, J. Speh, O. Weeger, B. Juttler: The isogeometric segmentation pipeline.- A. Apostolatos, M. Breitenberger, R. Wuechner, K.-U. Bletzinger: Domain Decomposition Methods and Kirchhoff-Love Shell Multipatch Coupling in Isogeometric Analysis.- C. Adam, S. Bouabdallah, M. Zarroug, H. Maitournam: A reduced integration for Reissner-Mindlin non-linear shell analysis using T-splines.- F. Cirak and K. Bandara: Multiresolution shape and topology optimisation with subdivision surfaces.- T. Liao, G. Xu and Y. Zhang: Atom Simplification and Quality T-mesh Generation for Multi-resolution Biomolecular Surfaces.- D. Fusseder and B. Simeon: Algorithmic Aspects of Isogeometric Shape Optimization.- N. Cavallini, O. Weeger, M. S. Pauletti, M. Martinelli, P. Antolin: Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools.- S.K. Kleiss and S.K. Tomar: Two-sided robust and sharp a posteriori error estimates in isogeometric discretization of elliptic problems.- A. Kunoth: Multilevel Preconditioning for Variational Problems.
「Nielsen BookData」 より