Global Carleman estimates for degenerate parabolic operators with applications
著者
書誌事項
Global Carleman estimates for degenerate parabolic operators with applications
(Memoirs of the American Mathematical Society, no. 1133)
American Mathematical Society, [2016], c2015
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"January 2016, volume 239, number 1133 (fifth of 6 numbers)."
Includes bibliographical references and index
内容説明・目次
内容説明
Degenerate parabolic operators have received increasing attention in recent years because they are associated with both important theoretical analysis, such as stochastic diffusion processes, and interesting applications to engineering, physics, biology, and economics.
This manuscript has been conceived to introduce the reader to global Carleman estimates for a class of parabolic operators which may degenerate at the boundary of the space domain, in the normal direction to the boundary. Such a kind of degeneracy is relevant to study the invariance of a domain with respect to a given stochastic diffusion flow, and appears naturally in climatology models.
目次
Introduction
Part 1. Weakly degenerate operators with Dirichlet boundary conditions
Controllability and inverse source problems
Notation and main results
Global Carleman estimates for weakly degenerate operators
Some Hardy-type inequalities (proof of Lemma 3.18)
Asymptotic properties of elements of $H^2 (\Omega) \cap H^1 _{A,0}(\Omega)$
Proof of the topological lemma 3.21
Outlines of the proof of Theorems 3.23 and 3.26
Step 1: computation of the scalar product on subdomains (proof of Lemmas 7.1 and 7.16)
Step 2: a first estimate of the scalar product: proof of Lemmas 7.2, 7.4, 7.18 and 7.19
Step 3: the limits as $\Omega^\delta \to \Omega$ (proof of Lemmas 7.5 and 7.20)
Step 4: partial Carleman estimate (proof of Lemmas 7.6 and 7.21)
Step 5: from the partial to the global Carleman estimate (proof of Lemmas 7.9-7.11)
Step 6: global Carleman estimate (proof of Lemmas 7.12, 7.14 and 7.15)
Proof of observability and controllability results
Application to some inverse source problems: proof of Theorems 2.9 and 2.11
Part 2. Strongly degenerate operators with Neumann boundary conditions
Controllability and inverse source problems: notation and main results
Global Carleman estimates for strongly degenerate operators
Hardy-type inequalities: proof of Lemma 17.10 and applications
Global Carleman estimates in the strongly degenerate case: proof of Theorem 17.7
Proof of Theorem 17.6 (observability inequality)
Lack of null controllability when $\alpha\geq 2$: proof of Proposition 16.5
Explosion of the controllability cost as $\alpha\to 2^-$ in space dimension $1$: proof of Proposition 16.7
Part 3. Some open problems
Some open problems
Bibliography
Index
「Nielsen BookData」 より