Low threshold organic semiconductor lasers : hybrid optoelectronjics and applications as explosive sensors

Author(s)

    • Wang, Yue

Bibliographic Information

Low threshold organic semiconductor lasers : hybrid optoelectronjics and applications as explosive sensors

Yue Wang

(Springer theses : recognizing outstanding Ph. D. research)

Springer, c2014

Available at  / 1 libraries

Search this Book/Journal

Note

Includes references

Description and Table of Contents

Description

This thesis focuses on two areas - the development of miniature plastic lasers that can be powered by LEDs, and the application of these lasers as highly sensitive sensors for vapours of nitroaromatic explosives (e.g. TNT). Polymer lasers are extremely compact visible lasers; the research described in the thesis is groundbreaking, driving forward the technology and physical understanding to allow these lasers to be routinely pumped by a single high-power LED. A notable advance in the work is the demonstration of nanoimprinted polymer lasers, which exhibit the world's lowest pump threshold densities by two orders of magnitude. The thesis also advances the application of these compact, novel lasers as highly sensitive detectors of explosive vapours, demonstrating that rapid detection can be achieved when microporous polymers are used. This work also demonstrates a prototype CMOS-based microsystem sensor for explosive vapours, exploiting a new detection approach.

Table of Contents

Introduction.- Theory of organic semiconductor lasers.- Experimental methods.- Low-threshold and broadly tuneable organic lasers based on star-shaped oligofluorene truxenes.- Commercial LED pumped organic semiconductor lasers.- Low threshold nanoimprinted organic lasers integration with micro-LED arrays.- Polymer with intrinsic microporosity used as explosive vapour sensors.- Towards ultra-portable hybrid organic/inorganic explosives sensing devices.- Conclusions and future work.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BB20824177
  • ISBN
    • 9783319012667
  • LCCN
    2013947782
  • Country Code
    sz
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Cham
  • Pages/Volumes
    xvi, 164 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top