3264 and all that : a second course in algebraic geometry
著者
書誌事項
3264 and all that : a second course in algebraic geometry
Cambridge University Press, 2016
- : hardback
- : paperback
大学図書館所蔵 全23件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [594]-601) and index
内容説明・目次
内容説明
This book can form the basis of a second course in algebraic geometry. As motivation, it takes concrete questions from enumerative geometry and intersection theory, and provides intuition and technique, so that the student develops the ability to solve geometric problems. The authors explain key ideas, including rational equivalence, Chow rings, Schubert calculus and Chern classes, and readers will appreciate the abundant examples, many provided as exercises with solutions available online. Intersection is concerned with the enumeration of solutions of systems of polynomial equations in several variables. It has been an active area of mathematics since the work of Leibniz. Chasles' nineteenth-century calculation that there are 3264 smooth conic plane curves tangent to five given general conics was an important landmark, and was the inspiration behind the title of this book. Such computations were motivation for Poincare's development of topology, and for many subsequent theories, so that intersection theory is now a central topic of modern mathematics.
目次
- Introduction
- 1. Introducing the Chow ring
- 2. First examples
- 3. Introduction to Grassmannians and lines in P3
- 4. Grassmannians in general
- 5. Chern classes
- 6. Lines on hypersurfaces
- 7. Singular elements of linear series
- 8. Compactifying parameter spaces
- 9. Projective bundles and their Chow rings
- 10. Segre classes and varieties of linear spaces
- 11. Contact problems
- 12. Porteous' formula
- 13. Excess intersections and the Chow ring of a blow-up
- 14. The Grothendieck-Riemann-Roch theorem
- Appendix A. The moving lemma
- Appendix B. Direct images, cohomology and base change
- Appendix C. Topology of algebraic varieties
- Appendix D. Maps from curves to projective space
- References
- Index.
「Nielsen BookData」 より