Probabilistic models of population evolution : scaling limits, genealogies and interactions
著者
書誌事項
Probabilistic models of population evolution : scaling limits, genealogies and interactions
(Mathematical Biosciences Institute lecture series, v. 1.6 . Stochastics in biological systems)
Springer , Mathematical Biosciences Institute at the Ohio State University, c2016
- : [pbk.]
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 121-123) and index
Series number on cover: 1.6
"Copublished with the Mathematical Biosciences Institute"--T. p. verso
内容説明・目次
内容説明
This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications.
Etienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtained his PhD in 1975 at University of Paris-Sud.
目次
Introduction.- Branching Processes.- Convergence to a Continuous State Branching Process.- Continuous State Branching Process (CSBP).- Genealogies.- Models of Finite Population with Interaction.- Convergence to a Continuous State Model.- Continuous Model with Interaction.- Appendix.
「Nielsen BookData」 より