Discrete systems and integrability
著者
書誌事項
Discrete systems and integrability
(Cambridge texts in applied mathematics)
Cambridge University Press, 2016
- : hardback
- : pbk
大学図書館所蔵 全14件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 411-439) and index
内容説明・目次
内容説明
This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Backlund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Pade approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painleve equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thorough list of references will benefit upper-level undergraduate, and beginning graduate students as well as researchers from other disciplines.
目次
- Preface
- 1. Introduction to difference equations
- 2. Discrete equations from transformations of continuous equations
- 3. Integrability of P Es
- 4. Interlude: lattice equations and numerical algorithms
- 5. Continuum limits of lattice P Es
- 6. One-dimensional lattices and maps
- 7. Identifying integrable difference equations
- 8. Hirota's bilinear method
- 9. Multi-soliton solutions and the Cauchy matrix scheme
- 10. Similarity reductions of integrable P Es
- 11. Discrete Painleve equations
- 12. Lagrangian multiform theory
- Appendix A. Elementary difference calculus and difference equations
- Appendix B. Theta functions and elliptic functions
- Appendix C. The continuous Painleve equations and the Garnier system
- Appendix D. Some determinantal identities
- References
- Index.
「Nielsen BookData」 より