Mathematical theory of elasticity of quasicrystals and its applications
著者
書誌事項
Mathematical theory of elasticity of quasicrystals and its applications
(Springer series in materials science, 246)
Springer, c2016 , Science Press
2nd ed
- : Springer
- : Science Press
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics.
This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket method and its application in deriving hydrodynamic equations. These new sections make the book an even more useful and comprehensive reference guide for researchers working in Condensed Matter Physics, Chemistry and Materials Science.
目次
Crystals.- Framework of crystal elasticity.- Quasicrystals and their properties.- The physical basis of elasticity of solid quasicrystals.- Elasticity theory of one-dimensional quasicrystals and simplification.-Elasticity theory of two-dimensional quasicrystals and simplification.- Application I-Some dislocation and interface problems and solutions of one- and two-dimensional quasicrystals.- Application II-Solutions of notch and crack problems of one- and two-dimensional quasicrystals.- Elasticity of three-dimensional quasicrystals and its applications.- Phonon-phason dynamics and defects dynamics of solid quasicrystals.- Complex analysis method.- Variational principles of elasticity of quasicrystals, numerical analysis and applications.- Some mathematical principles on solutions of elasticity of quasicrystals.- Nonlinear behaviour of solid quasicrystals.- Fracture theory of solid quasicrystals.- Hydrodynamics of quasicrystals.- Conclusion remarkable.
「Nielsen BookData」 より