Topological optimization and optimal transport : in the applied sciences
Author(s)
Bibliographic Information
Topological optimization and optimal transport : in the applied sciences
(Radon series on computational and applied mathematics / managing editor Heinz W. Engl ; editors Hansjörg Albrecher ... [et al.], v. 17)
De Gruyter, c2017
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Other editors: Édouard Oudet, Martin Rumpf, Guillaume Carlier, Thierry Champion, Filippo Santambrogio
Includes bibliographical references and index
Description and Table of Contents
Description
By discussing topics such as shape representations, relaxation theory and optimal transport, trends and synergies of mathematical tools required for optimization of geometry and topology of shapes are explored. Furthermore, applications in science and engineering, including economics, social sciences, biology, physics and image processing are covered.
Contents
Part I
Geometric issues in PDE problems related to the infinity Laplace operator
Solution of free boundary problems in the presence of geometric uncertainties
Distributed and boundary control problems for the semidiscrete Cahn-Hilliard/Navier-Stokes system with nonsmooth Ginzburg-Landau energies
High-order topological expansions for Helmholtz problems in 2D
On a new phase field model for the approximation of interfacial energies of multiphase systems
Optimization of eigenvalues and eigenmodes by using the adjoint method
Discrete varifolds and surface approximation
Part II
Weak Monge-Ampere solutions of the semi-discrete optimal transportation problem
Optimal transportation theory with repulsive costs
Wardrop equilibria: long-term variant, degenerate anisotropic PDEs and numerical approximations
On the Lagrangian branched transport model and the equivalence with its Eulerian formulation
On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows
Pressureless Euler equations with maximal density constraint: a time-splitting scheme
Convergence of a fully discrete variational scheme for a thin-film equatio
Interpretation of finite volume discretization schemes for the Fokker-Planck equation as gradient flows for the discrete Wasserstein distance
by "Nielsen BookData"