Higher engineering mathematics
著者
書誌事項
Higher engineering mathematics
Routledge, 2017
8th ed
- : pbk
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
Now in its eighth edition, Higher Engineering Mathematics has helped thousands of students succeed in their exams. Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced engineering mathematics that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper-level vocational courses and for undergraduate degree courses. It is also supported by a fully updated companion website with resources for both students and lecturers. It has full solutions to all 2,000 further questions contained in the 277 practice exercises.
目次
Preface
Syllabus guidance
Section A Number and algebra
1 Algebra
2 Partial fractions
3 Logarithms
4 Exponential functions
5 Inequalities
6 Arithmetic and geometric progressions
7 The binomial series
8 Maclaurin's series
9 Solving equations by iterative methods
10 Binary, octal and hexadecimal numbers
11 Boolean algebra and logic circuits
Section B Geometry and trigonometry
12 Introduction to trigonometry
13 Cartesian and polar co-ordinates
14 The circle and its properties
15 Trigonometric waveforms
16 Hyperbolic functions
17 Trigonometric identities and equations
18 The relationship between trigonometric and
hyperbolic functions
19 Compound angles
Section C Graphs
20 Functions and their curves
21 Irregular areas, volumes and mean values of waveforms
Section D Complex numbers
22 Complex numbers
23 De Moivre's theorem
Section E Matrices and determinants
24 The theory of matrices and determinants
25 Applications of matrices and determinants
Section F Vector geometry 303
26 Vectors
27 Methods of adding alternating waveforms
28 Scalar and vector products
Section G Introduction to calculus
29 Methods of differentiation
30 Some applications of differentiation
31 Standard integration
32 Some applications of integration
33 Introduction to differential equations
Section H Further differential calculus
34 Differentiation of parametric equations
35 Differentiation of implicit functions
36 Logarithmic differentiation
37 Differentiation of hyperbolic functions
38 Differentiation of inverse trigonometric and hyperbolic functions
39 Partial differentiation
40 Total differential, rates of change and small changes
41 Maxima, minima and saddle points for functions of two variables
Section I Further integral calculus
42 Integration using algebraic substitutions
43 Integration using trigonometric and hyperbolic substitutions
44 Integration using partial fractions
45 The t = tan /2
46 Integration by parts
47 Reduction formulae
48 Double and triple integrals
49 Numerical integration
Section J Further differential equations
50 Homogeneous first order differential equations
51 Linear first order differential equations
52 Numerical methods for first order differential equations
53 First order differential equations of the form
54 First order differential equations of the form
55 Power series methods of solving ordinary differential equations
56 An introduction to partial differential equations
Section K Statistics and probability
57 Presentation of statistical data
58 Mean, median, mode and standard deviation
59 Probability
60 The binomial and Poisson distributions
61 The normal distribution
62 Linear correlation
63 Linear regression
64 Sampling and estimation theories
65 Significance testing
66 Chi-square and distribution-free tests
Section L Laplace transforms
67 Introduction to Laplace transforms
68 Properties of Laplace transforms
69 Inverse Laplace transforms
70 The Laplace transform of the Heaviside function
71 The solution of differential equations using Laplace transforms
72 The solution of simultaneous differential equations using Laplace transforms
Section M Fourier series
73 Fourier series for periodic functions of period 2
74 Fourier series for a non-periodic function over period 2
75 Even and odd functions and half-range Fourier series
76 Fourier series over any range
77 A numerical method of harmonic analysis
78 The complex or exponential form of a Fourier series
Section N Z-transforms
79 An introduction to z-transforms
Essential formulae
Answers to Practice Exercises
Index
「Nielsen BookData」 より