Properties of closed 3-braids and braid representations of links

著者

    • Stoimenow, Alexander

書誌事項

Properties of closed 3-braids and braid representations of links

Alexander Stoimenow

(SpringerBriefs in mathematics)

Springer, c2017

  • : [pbk.]

大学図書館所蔵 件 / 6

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 101-104) and index

内容説明・目次

内容説明

This book studies diverse aspects of braid representations via knots and links. Complete classification results are illustrated for several properties through Xu's normal 3-braid form and the Hecke algebra representation theory of link polynomials developed by Jones. Topological link types are identified within closures of 3-braids which have a given Alexander or Jones polynomial. Further classifications of knots and links arising by the closure of 3-braids are given, and new results about 4-braids are part of the work. Written with knot theorists, topologists,and graduate students in mind, this book features the identification and analysis of effective techniques for diagrammatic examples with unexpected properties.

目次

1. Introduction.- 2. Preliminaries, basic definitions and conventions.- 3. Xu's form and Seifert surfaces.- 4. Polynomial invariants.- 5. Positivity of 3-braid links.- 6. Studying alternating links by braid index.- 7. Applications of the representation theory.- Appendix. -References.-Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB25237113
  • ISBN
    • 9783319681481
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    x, 110 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ