Parameter estimation in fractional diffusion models
著者
書誌事項
Parameter estimation in fractional diffusion models
(Bocconi & Springer series / (series editors) Sandro Salsa ... [et al.], v. 8)
Springer , Bocconi University Press, c2017
- : pbk
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Softcover re-print of the Hardcover 1st edition 2017"--T.p. verso of pbk.
Includes bibliographical references (p. 381-388) and index
内容説明・目次
内容説明
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is "white," i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides simple and suitable parameter estimation methods in these models, making it a valuable resource for all researchers in this field.
The book is addressed to specialists and researchers in the theory and statistics of stochastic processes, practitioners who apply statistical methods of parameter estimation, graduate and post-graduate students who study mathematical modeling and statistics.
目次
1 Description and properties of the basic stochastic models.- 2 The Hurst index estimators for a fractional Brownian motion.- 3 Estimation of the Hurst index from the solution of a stochastic differential equation.- 4 Parameter estimation in the mixed models via power variations.- 5 Drift parameter estimation in diffusion and fractional diffusion models.- 6 The extended Orey index for Gaussian processes.- 7 Appendix A: Selected facts from mathematical and functional analysis.- 8 Appendix B: Selected facts from probability, stochastic processes and stochastic calculus.
「Nielsen BookData」 より