Mathematical theory of Bayesian statistics

書誌事項

Mathematical theory of Bayesian statistics

Sumio Watanabe

(A Chapman & Hall book)

CRC Press, c2018

  • : hdk
  • : pbk

大学図書館所蔵 件 / 19

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 309-316) and index

内容説明・目次

巻冊次

: pbk ISBN 9780367734817

内容説明

Mathematical Theory of Bayesian Statistics introduces the mathematical foundation of Bayesian inference which is well-known to be more accurate in many real-world problems than the maximum likelihood method. Recent research has uncovered several mathematical laws in Bayesian statistics, by which both the generalization loss and the marginal likelihood are estimated even if the posterior distribution cannot be approximated by any normal distribution. Features Explains Bayesian inference not subjectively but objectively. Provides a mathematical framework for conventional Bayesian theorems. Introduces and proves new theorems. Cross validation and information criteria of Bayesian statistics are studied from the mathematical point of view. Illustrates applications to several statistical problems, for example, model selection, hyperparameter optimization, and hypothesis tests. This book provides basic introductions for students, researchers, and users of Bayesian statistics, as well as applied mathematicians. Author Sumio Watanabe is a professor of Department of Mathematical and Computing Science at Tokyo Institute of Technology. He studies the relationship between algebraic geometry and mathematical statistics.

目次

Mathematical Theory of Bayesian Statistics
巻冊次

: hdk ISBN 9781482238068

内容説明

Mathematical Theory of Bayesian Statistics introduces the mathematical foundation of Bayesian inference which is well-known to be more accurate in many real-world problems than the maximum likelihood method. Recent research has uncovered several mathematical laws in Bayesian statistics, by which both the generalization loss and the marginal likelihood are estimated even if the posterior distribution cannot be approximated by any normal distribution. Features Explains Bayesian inference not subjectively but objectively. Provides a mathematical framework for conventional Bayesian theorems. Introduces and proves new theorems. Cross validation and information criteria of Bayesian statistics are studied from the mathematical point of view. Illustrates applications to several statistical problems, for example, model selection, hyperparameter optimization, and hypothesis tests. This book provides basic introductions for students, researchers, and users of Bayesian statistics, as well as applied mathematicians. Author Sumio Watanabe is a professor of Department of Mathematical and Computing Science at Tokyo Institute of Technology. He studies the relationship between algebraic geometry and mathematical statistics.

目次

Mathematical Theory of Bayesian Statistics

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ