Elementary introduction to the Lebesgue integral
著者
書誌事項
Elementary introduction to the Lebesgue integral
(Textbooks in mathematics)
CRC Press, c2018
- : pbk
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"A Chapman & Hall book"--Cover
Includes bibliographical references (p. 179) and index
内容説明・目次
内容説明
Elementary Introduction to the Lebesgue Integral is not just an excellent primer of the Lebesgue integral for undergraduate students but a valuable tool for tomorrow's mathematicians. Since the early twentieth century, the Lebesgue integral has been a mainstay of mathematical analysis because of its important properties with respect to limits. For this reason, it is vital that mathematical students properly understand the complexities of the Lebesgue integral. However, most texts about the subject are geared towards graduate students, which makes it a challenge for instructors to properly teach and for less advanced students to learn.
Ensuring that the subject is accessible for all readers, the author presents the text in a clear and concrete manner which allows readers to focus on the real line. This is important because Lebesgue integral can be challenging to understand when compared to more widely used integrals like the Riemann integral. The author also includes in the textbook abundant examples and exercises to help explain the topic. Other topics explored in greater detail are abstract measure spaces and product measures, which are treated concretely.
Features:
Comprehensibly written introduction to the Lebesgue integral for undergraduate students
Includes many examples, figures and exercises
Features a Table of Notation and Glossary to aid readers
Solutions to selected exercises
目次
Introductory Thoughts.The Purpose of Measures.The Lebesgue Integral.Integrable Functions.The Lebesgue Spaces. The Concept of Outer Measure.What is a Measurable Set? Decomposition Theorems.Creation of Measures. Instances of Measurable Sets. Approximation by Open and Closed Sets. Different Methods of Convergence. Measure on a Product Space. Additivity for Outer Measure. Nonmeasurable and Non-Borel Sets
「Nielsen BookData」 より