Degree spectra of relations on a cone

著者

    • Harrison-Trainor, Matthew

書誌事項

Degree spectra of relations on a cone

Matthew Harrison-Trainor

(Memoirs of the American Mathematical Society, no. 1208)

American Mathematical Society, c2018

大学図書館所蔵 件 / 8

この図書・雑誌をさがす

注記

Includes bibliographical references and index

May 2018, volume 253, number 1208 (third of 7 numbers)

内容説明・目次

内容説明

Let $\mathcal A$ be a mathematical structure with an additional relation $R$. The author is interested in the degree spectrum of $R$, either among computable copies of $\mathcal A$ when $(\mathcal A,R)$ is a ``natural'' structure, or (to make this rigorous) among copies of $(\mathcal A,R)$ computable in a large degree d. He introduces the partial order of degree spectra on a cone and begin the study of these objects. Using a result of Harizanov--that, assuming an effectiveness condition on $\mathcal A$ and $R$, if $R$ is not intrinsically computable, then its degree spectrum contains all c.e. degrees--the author shows that there is a minimal non-trivial degree spectrum on a cone, consisting of the c.e. degrees.

目次

Introduction Preliminaries Degree spectra between the C.E. degrees and the D.C.E. degrees Degree spectra of relations on the naturals A ``fullness'' theorem for 2-CEA degrees Further questions Appendix A. relativizing Harizanov's theorem on C.E. degrees Bibliography Index of notation and terminology.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ