Chain event graphs
著者
書誌事項
Chain event graphs
(Series in computer science and data analysis)
CRC Press, c2018
- : hardback
大学図書館所蔵 件 / 全4件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"A Chapman & Hall book"
Includes bibliographical references (p. 221-229) and index
内容説明・目次
内容説明
Written by some major contributors to the development of this class of graphical models, Chain Event Graphs introduces a viable and straightforward new tool for statistical inference, model selection and learning techniques. The book extends established technologies used in the study of discrete Bayesian Networks so that they apply in a much more general setting
As the first book on Chain Event Graphs, this monograph is expected to become a landmark work on the use of event trees and coloured probability trees in statistics, and to lead to the increased use of such tree models to describe hypotheses about how events might unfold.
Features:
introduces a new and exciting discrete graphical model based on an event tree
focusses on illustrating inferential techniques, making its methodology accessible to a very broad audience and, most importantly, to practitioners
illustrated by a wide range of examples, encompassing important present and future applications
includes exercises to test comprehension and can easily be used as a course book
introduces relevant software packages
Rodrigo A. Collazo is a methodological and computational statistician based at the Naval Systems Analysis Centre (CASNAV) in Rio de Janeiro, Brazil. Christiane Goergen is a mathematical statistician at the Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany. Jim Q. Smith is a professor of statistics at the University of Warwick, UK. He has published widely in the field of statistics, AI, and decision analysis and has written two other books, most recently Bayesian Decision Analysis: Principles and Practice (Cambridge University Press 2010).
目次
1.Introduction 2.Bayesian inference using graphs 3.The Chain Event Graph 4.Reasoning with a CEG 5.Estimation and propagation on a given CEG 6.Model selection for CEGs 7.How to model with a CEG: a real-world application 8.Causal inference using CEGs Bibliography
「Nielsen BookData」 より