Handbook of mathematical geodesy : functional analytic and potential theoretic methods
著者
書誌事項
Handbook of mathematical geodesy : functional analytic and potential theoretic methods
(Geosystems mathematics)
Birkhäuser , Springer, c2018
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Written by leading experts, this book provides a clear and comprehensive survey of the "status quo" of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today's least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
目次
Introduction.- Gauss as Scientific Mediator between Mathematics and Geodesy from the Past to the Present .- An Overview on Tools from Functional Analysis.- Operator-Theoretic and Regularization Approaches to Ill-Posed Problems.- Geodetic Observables and Their Mathematical Treatment in Multiscale Framework.- The Analysis of Geodetic Boundary Value Problem: State and Perspectives.- Oblique Stochastic Boundary Value Problem.- About the Importance of the Runge-Walsh Concept for Gravitational Field Determination.- Geomathematical Advances in Satellite Gravity Gradiometry.- Parameter Choices for Fast Harmonic Spline Approximation.- Gravimetry as an Ill-Posed Problem in Mathematical Geodesy.- Gravimetry and Exploration.- On the Non-Uniqueness of Gravitational and Magnetic Field Data Inversion.- Spherical Harmonics Based Special Function Systems and Constructive Approximation Methods.- Spherical Potential Theory: Tools and Applications.- A combination of Downward Continuation and Local Approximation for Harmonic Potentials.- Joint Inversion of Multiple Observation.
「Nielsen BookData」 より