Advanced boundary element methods : treatment of boundary value, transmission and contact problems
著者
書誌事項
Advanced boundary element methods : treatment of boundary value, transmission and contact problems
(Springer series in computational mathematics, v. 52)
Springer, c2018
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 631-649) and index
内容説明・目次
内容説明
This book is devoted to the mathematical analysis of the numerical solution of boundary integral equations treating boundary value, transmission and contact problems arising in elasticity, acoustic and electromagnetic scattering. It serves as the mathematical foundation of the boundary element methods (BEM) both for static and dynamic problems. The book presents a systematic approach to the variational methods for boundary integral equations including the treatment with variational inequalities for contact problems. It also features adaptive BEM, hp-version BEM, coupling of finite and boundary element methods - efficient computational tools that have become extremely popular in applications.
Familiarizing readers with tools like Mellin transformation and pseudodifferential operators as well as convex and nonsmooth analysis for variational inequalities, it concisely presents efficient, state-of-the-art boundary element approximations and points to up-to-date research.
The authors are well known for their fundamental work on boundary elements and related topics, and this book is a major contribution to the modern theory of the BEM (especially for error controlled adaptive methods and for unilateral contact and dynamic problems) and is a valuable resource for applied mathematicians, engineers, scientists and graduate students.
目次
1 Introduction.- 2 Some Elements of Potential Theory.- 3 A Fourier Series Approach.- 4 Mixed BVPs, Transmission Problems.- 5 Signorini Problem, More Nonsmooth BVPs.- 6 A Primer to Boundary Element Methods.- 7 BEM in Polygonal/Polyhedral Domains.- 8 Exponential Convergence of hp-BEM.- 9 Mapping Properties on Polygons.- 10 A-BEM.- 11 BEM for Contact Problems.- 12 FEM-BEM Coupling.- 13 Time-Domain BEM.- A Linear Operator Theory.- B Pseudodifferential Operators.- C Convex and Nonsmooth Analysis.- D Some Implementation for BEM.- Bibliograpy.- Index.
「Nielsen BookData」 より