Erdélyi-Kober fractional calculus : from a statistical perspective, inspired by solar neutrino physics

著者

    • Mathai, A. M.
    • Haubold, H. J.

書誌事項

Erdélyi-Kober fractional calculus : from a statistical perspective, inspired by solar neutrino physics

A.M. Mathai, H.J. Haubold

(Springer briefs in mathematical physics, v. 31)

Springer, c2018

  • : [pbk.]

大学図書館所蔵 件 / 2

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

This book focuses on Erdelyi-Kober fractional calculus from a statistical perspective inspired by solar neutrino physics. Results of diffusion entropy analysis and standard deviation analysis of data from the Super-Kamiokande solar neutrino experiment lead to the development of anomalous diffusion and reaction in terms of fractional calculus. The new statistical perspective of Erdelyi-Kober fractional operators outlined in this book will have fundamental applications in the theory of anomalous reaction and diffusion processes dealt with in physics. A major mathematical objective of this book is specifically to examine a new definition for fractional integrals in terms of the distributions of products and ratios of statistically independently distributed positive scalar random variables or in terms of Mellin convolutions of products and ratios in the case of real scalar variables. The idea will be generalized to cover multivariable cases as well as matrix variable cases. In the matrix variable case, M-convolutions of products and ratios will be used to extend the ideas. We then give a definition for the case of real-valued scalar functions of several matrices.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB26884342
  • ISBN
    • 9789811311581
  • LCCN
    2018950187
  • 出版国コード
    si
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Singapore
  • ページ数/冊数
    xii, 122 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ