Metrics, norms, inner products, and operator theory
著者
書誌事項
Metrics, norms, inner products, and operator theory
(Applied and numerical harmonic analysis / series editor, John J. Benedetto)
Birkhäuser , Springer, c2018
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 347-348) and index
内容説明・目次
内容説明
This text is a self-contained introduction to the three main families that we encounter in analysis - metric spaces, normed spaces, and inner product spaces - and to the operators that transform objects in one into objects in another. With an emphasis on the fundamental properties defining the spaces, this book guides readers to a deeper understanding of analysis and an appreciation of the field as the "science of functions."
Many important topics that are rarely presented in an accessible way to undergraduate students are included, such as unconditional convergence of series, Schauder bases for Banach spaces, the dual of p topological isomorphisms, the Spectral Theorem, the Baire Category Theorem, and the Uniform Boundedness Principle. The text is constructed in such a way that instructors have the option whether to include more advanced topics.
Written in an appealing and accessible style, Metrics, Norms, Inner Products, and Operator Theory is suitable for independent study or as the basis for an undergraduate-level course. Instructors have several options for building a course around the text depending on the level and interests of their students.
Key features:
Aimed at students who have a basic knowledge of undergraduate real analysis. All of the required background material is reviewed in the first chapter.
Suitable for undergraduate-level courses; no familiarity with measure theory is required.
Extensive exercises complement the text and provide opportunities for learning by doing.
A separate solutions manual is available for instructors via the Birkhauser website (www.springer.com/978-3-319-65321-1).
Unique text providing an undergraduate-level introduction to metrics, norms, inner products, and their associated operator theory.
目次
Preface.- Notation and Preliminaries.- Metric Spaces.- Norms and Banach Spaces.- Further Results on Banach Spaces.- Inner Products and Hilbert Spaces.- Operator Theory.- Operators and Hilbert Spaces.
「Nielsen BookData」 より