Spectral theory of canonical systems
著者
書誌事項
Spectral theory of canonical systems
(De Gruyter studies in mathematics, v. 70)
De Gruyter, c2018
大学図書館所蔵 件 / 全11件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
内容説明・目次
内容説明
Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schroedinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. 'Spectral Theory of Canonical Systems' offers a selfcontained and detailed introduction to this theory. Techniques to construct self-adjoint realizations in suitable Hilbert spaces, a modern treatment of de Branges spaces, and direct and inverse spectral problems are discussed.
Contents
Basic definitions
Symmetric and self-adjoint relations
Spectral representation
Transfer matrices and de Branges spaces
Inverse spectral theory
Some applications
The absolutely continuous spectrum
「Nielsen BookData」 より