Bellman function for extremal problems in BMO II : evolution
Author(s)
Bibliographic Information
Bellman function for extremal problems in BMO II : evolution
(Memoirs of the American Mathematical Society, no. 1220)
American Mathematical Society, 2018
Available at 9 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"September 2018, volume 255, number 1220 (third of 7 numbers)"
Includes bibliographical references (p. 131-133) and index
Description and Table of Contents
Description
In a previous study, the authors built the Bellman function for integral functionals on the $\mathrm{BMO}$ space. The present paper provides a development of the subject. They abandon the majority of unwanted restrictions on the function that generates the functional. It is the new evolutional approach that allows the authors to treat the problem in its natural setting. What is more, these new considerations lighten dynamical aspects of the Bellman function, in particular, the evolution of its picture.
Table of Contents
Introduction
Setting and sketch of proof
Patterns for Bellman candidates
Evolution of Bellman candidates
Optimizers
Related questions and further development
Bibliography
Index
by "Nielsen BookData"