書誌事項

Handbook of graphical models

edited by Marloes Maathuis ... [et al.]

(Handbooks of modern statistical methods / Series editors, Garrett Fitzmaurice)

CRC Press, c2019

  • : hardback

大学図書館所蔵 件 / 7

この図書・雑誌をさがす

注記

Other editors: Mathias Drton, Steffen Lauritzen, Martin Wainwright

Includes bibliographical references and index

"A Chapman & Hall book"

内容説明・目次

内容説明

A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.

目次

Part I Conditional independencies and Markov properties 1. Conditional Independence and Basic Markov Properties - Milan Studeny 2.Markov Properties for Mixed Graphical Models - Robin Evans 3. Algebraic Aspects of Conditional Independence and Graphical Models - Thomas Kahle, Johannes Rauh, and Seth Sullivant Part II Computing with factorizing distributions 4. MAP Estimation: Linear Programming Relaxation and Message-Passing Algorithms - Ofer Meshi and Alexander G. Schwing 5. Sequential Monte Carlo Methods - Arnaud Doucet and Anthony Lee Part III Statistical inference 6. Discrete Graphical Models and their Parametrization - Luca La Rocca and Alberto Roverato 7. Gaussian Graphical Models - Caroline Uhler 8. Bayesian inference in Graphical Gaussian Models - Helene Massam 9. Latent tree models - Piotr Zwiernik 10.Neighborhood selection methods - Po-Ling Loh 11. Nonparametric Graphical Models - Han Liu and John La erty 12.Inference in high-dimensional graphical models - Jana Jankova and Sara van de Geer Part IV Causal inference 13. Causal Concepts and Graphical Models - Vanessa Didelez 14. Identi cation In Graphical Causal Models - Ilya Shpitser 15. Mediation Analysis - Johan Steen and Stijn Vansteelandt 16.Search for Causal Models - Peter Spirtes and Kun Zhang Part V Applications 17.Graphical Models for Forensic Analysis - A. Philip Dawid and Julia Mortera 18. Graphical models in molecular systems biology - Sach Mukherjee and Chris Oates 19.Graphical Models in Genetics, Genomics and Metagenomics - Hongzhe Li and Jing Ma

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB27453506
  • ISBN
    • 9781498788625
  • LCCN
    2018010969
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Boca Raton
  • ページ数/冊数
    xviii, 536 p.
  • 大きさ
    26 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ