Extended states for the Schrödinger operator with quasi-periodic potential in dimension two

著者

    • Karpeshina, Yulia
    • Shterenberg, Roman

書誌事項

Extended states for the Schrödinger operator with quasi-periodic potential in dimension two

Yulia Karpeshina, Roman Shterenberg

(Memoirs of the American Mathematical Society, no.1239)

American Mathematical Society, 2019

大学図書館所蔵 件 / 8

この図書・雑誌をさがす

注記

Includes bibliographical references

"March 2019, volume 258, number 1239 (third of 7 numbers)"

内容説明・目次

内容説明

The authors consider a Schrodinger operator $H=-\Delta +V(\vec x)$ in dimension two with a quasi-periodic potential $V(\vec x)$. They prove that the absolutely continuous spectrum of $H$ contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves $e^i\langle \vec \varkappa ,\vec x\rangle $ in the high energy region. Second, the isoenergetic curves in the space of momenta $\vec \varkappa $ corresponding to these eigenfunctions have the form of slightly distorted circles with holes (Cantor type structure). A new method of multiscale analysis in the momentum space is developed to prove these results. The result is based on a previous paper on the quasiperiodic polyharmonic operator $(-\Delta )^l+V(\vec x)$, $l>1$. Here the authors address technical complications arising in the case $l=1$. However, this text is self-contained and can be read without familiarity with the previous paper.

目次

Introduction Preliminary Remarks Step I Step II Step III Step IV Induction Isoenergetic Sets. Generalized Eigenfunctions of $H$ Proof of Absolute Continuity of the Spectrum Appendices List of main notations Bibliography.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB28188138
  • ISBN
    • 9781470435431
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, RI
  • ページ数/冊数
    v, 139 p.
  • 大きさ
    26 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ