Lessons in play : an introduction to combinatorial game theory
Author(s)
Bibliographic Information
Lessons in play : an introduction to combinatorial game theory
(An A K Peters book)
CRC Press, c2019
2nd ed
- : hbk
Available at 13 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 317-320) and index
Description and Table of Contents
Description
This second edition of Lessons in Play reorganizes the presentation of the popular original text in combinatorial game theory to make it even more widely accessible. Starting with a focus on the essential concepts and applications, it then moves on to more technical material. Still written in a textbook style with supporting evidence and proofs, the authors add many more exercises and examples and implement a two-step approach for some aspects of the material involving an initial introduction, examples, and basic results to be followed later by more detail and abstract results.
Features
Employs a widely accessible style to the explanation of combinatorial game theory
Contains multiple case studies
Expands further directions and applications of the field
Includes a complete rewrite of CGSuite material
Table of Contents
Combinatorial Games
0.1 Basic Terminology
Problems
1 Basic Techniques
1.1 Greedy
1.2 Symmetry
1.3 Parity
1.4 Give Them Enough Rope!
1.5 Strategy Stealing
1.6 Change the Game!
1.7 Case Study: Long Chains in Dots & Boxes
Problems
2 Outcome Classes
2.1 Outcome Functions
2.2 Game Positions and Options
2.3 Impartial Games: Minding Your Ps and Ns
2.4 Case Study: Roll The Lawn
2.5 Case Study: Timber
2.6 Case Study: Partizan Endnim
Problems
3 Motivational Interlude: Sums of Games
3.1 Sums
3.2 Comparisons
3.3 Equality and Identity
3.4 Case Study: Domineering Rectangles
Problems
4 The Algebra of Games
4.1 The Fundamental Definitions
4.2 Games Form a Group with a Partial Order
4.3 Canonical Form
4.4 Case Study: Cricket Pitch
4.5 Incentives
Problems
5 Values of Games
5.1 Numbers
5.2 Case Study: Shove
5.3 Stops
5.4 A Few All-Smalls: Up, Down, and Stars
5.5 Switches
5.6 Case Study: Elephants & Rhinos
5.7 Tiny and Miny
5.8 Toppling Dominoes
5.9 Proofs of Equivalence of Games and Numbers
Problems
6 Structure
6.1 Games Born by Day 2
6.2 Extremal Games Born By Day n
6.3 More About Numbers
6.4 The Distributive Lattice of Games Born by Day n
6.5 Group Structure
Problems
7 Impartial Games
7.1 A Star-Studded Game
7.2 The Analysis of Nim
7.3 Adding Stars
7.4 A More Succinct Notation
7.5 Taking-and-Breaking Games
7.6 Subtraction Games
7.7 Keypad Games
Problems
8 Hot Games
8.1 Comparing Games and Numbers
8.2 Coping with Confusion
8.3 Cooling Things Down
8.4 Strategies for Playing Hot Games
8.5 Norton Products
Problems
9 All-Small Games
9.1 Cast of Characters
9.2 Motivation: The Scale of Ups
9.3 Equivalence Under
9.4 Atomic Weight
9.5 All-Small Shove
9.6 More Toppling Dominoes
9.7 Clobber
Problems
10 Trimming Game Trees
10.1 Introduction
10.2 Reduced Canonical Form
10.3 Hereditary-Transitive Games
10.4 Ordinal Sum
10.5 Stirling-Shave
10.6 Even More Toppling Dominoes
Problems
Further Directions
1 Transfinite Games
2 Algorithms and Complexity
3 Loopy Games
4 Kos: Repeated Local Positions
5 Top-Down Thermography
6 Enriched Environments
7 Idempotents
8 Mis`ere Play
9 Scoring Games
A Top-Down Induction
A.1 Top-Down Induction
A.2 Examples
A.3 Why is Top-Down Induction Better?
A.4 Strengthening the Induction Hypothesis
A.5 Inductive Reasoning
Problems
B CGSuite
B.1 Installing CGSuite
B.2 Worksheet Basics
B.3 Programming in CGSuite's Language
C Solutions to Exercises
D Rulesets
by "Nielsen BookData"