Model-based clustering and classification for data science : with applications in R
著者
書誌事項
Model-based clustering and classification for data science : with applications in R
(Cambridge series on statistical and probabilistic mathematics)
Cambridge University Press, 2019
大学図書館所蔵 全14件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other authors: Gilles Celeux, T. Brendan Murphy, Adrian E. Raftery
Includes bibliographical references (p. 386-414) and index
内容説明・目次
内容説明
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.
目次
- 1. Introduction
- 2. Model-based clustering: basic ideas
- 3. Dealing with difficulties
- 4. Model-based classification
- 5. Semi-supervised clustering and classification
- 6. Discrete data clustering
- 7. Variable selection
- 8. High-dimensional data
- 9. Non-Gaussian model-based clustering
- 10. Network data
- 11. Model-based clustering with covariates
- 12. Other topics
- List of R packages
- Bibliography
- Index.
「Nielsen BookData」 より