Semigroups of linear operators : with applications to analysis, probability and physics
著者
書誌事項
Semigroups of linear operators : with applications to analysis, probability and physics
(London Mathematical Society student texts, 93)
Cambridge University Press, 2019
- : hardback
- : pbk
大学図書館所蔵 全18件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 214-218) and index
内容説明・目次
内容説明
The theory of semigroups of operators is one of the most important themes in modern analysis. Not only does it have great intellectual beauty, but also wide-ranging applications. In this book the author first presents the essential elements of the theory, introducing the notions of semigroup, generator and resolvent, and establishes the key theorems of Hille-Yosida and Lumer-Phillips that give conditions for a linear operator to generate a semigroup. He then presents a mixture of applications and further developments of the theory. This includes a description of how semigroups are used to solve parabolic partial differential equations, applications to Levy and Feller-Markov processes, Koopmanism in relation to dynamical systems, quantum dynamical semigroups, and applications to generalisations of the Riemann-Liouville fractional integral. Along the way the reader encounters several important ideas in modern analysis including Sobolev spaces, pseudo-differential operators and the Nash inequality.
目次
- Introduction
- 1. Semigroups and generators
- 2. The generation of semigroups
- 3. Convolution semigroups of measures
- 4. Self adjoint semigroups and unitary groups
- 5. Compact and trace class semigroups
- 6. Perturbation theory
- 7. Markov and Feller semigroups
- 8. Semigroups and dynamics
- 9. Varopoulos semigroups
- Notes and further reading
- Appendices: A. The space C0(Rd)
- B. The Fourier transform
- C. Sobolev spaces
- D. Probability measures and Kolmogorov's theorem on construction of stochastic processes
- E. Absolute continuity, conditional expectation and martingales
- F. Stochastic integration and Ito's formula
- G. Measures on locally compact spaces: some brief remarks
- References
- Index.
「Nielsen BookData」 より