A graduate course on statistical inference

書誌事項

A graduate course on statistical inference

Bing Li, G. Jogesh Babu

(Springer texts in statistics)

Springer, c2019

大学図書館所蔵 件 / 8

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

This textbook offers an accessible and comprehensive overview of statistical estimation and inference that reflects current trends in statistical research. It draws from three main themes throughout: the finite-sample theory, the asymptotic theory, and Bayesian statistics. The authors have included a chapter on estimating equations as a means to unify a range of useful methodologies, including generalized linear models, generalized estimation equations, quasi-likelihood estimation, and conditional inference. They also utilize a standardized set of assumptions and tools throughout, imposing regular conditions and resulting in a more coherent and cohesive volume. Written for the graduate-level audience, this text can be used in a one-semester or two-semester course.

目次

1. Probability and Random Variables.- 2. Classical Theory of Estimation.- 3. Testing Hypotheses in the Presence of Nuisance Parameters.- 4. Testing Hypotheses in the Presence of Nuisance Parameters.- 5. Basic Ideas of Bayesian Methods.- 6. Bayesian Inference.- 7. Asymptotic Tools and Projections.- 8. Asymptotic Theory for Maximum Likelihood Estimation.- 9. Estimating Equations.- 10. Convolution Theorem and Asymptotic Efficiency.- 11. Asymptotic Hypothesis Test.- References.- Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB28778732
  • ISBN
    • 9781493997596
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    xii, 379 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ