Computational mathematics with SageMath
Author(s)
Bibliographic Information
Computational mathematics with SageMath
(OT, 160)
Society for Industrial and Applied Mathematics, [2019]
- : pbk
Available at 4 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Etchujima library, Tokyo University of Marine Science and Technology工流通情報システム
: pbk410/Z4202151292
Note
Includes bibliographical references and index
Contents of Works
- Getting to grips with Sage
- Algebra and symbolic computation
- Numerical computation
- Combinatorics
Description and Table of Contents
Description
SageMath, or Sage for short, is an open-source mathematical software system based on the Python language and developed by an international community comprising hundreds of teachers and researchers, whose aim is to provide an alternative to the commercial products Magma, Maple, Mathematica, and MATLAB (R). To achieve this, Sage relies on many open-source programs, including GAP, Maxima, PARI, and various scientific libraries for Python, to which thousands of new functions have been added. Sage is freely available and is supported by all modern operating systems.
Sage provides a wonderful scientific and graphical calculator for high school students, and it efficiently supports undergraduates in their computations in analysis, linear algebra, calculus, etc. For graduate students, researchers, and engineers in various mathematical specialties, Sage provides the most recent algorithms and tools, which is why several universities around the world already use Sage at the undergraduate level.
Computational Mathematics with SageMath, written by researchers and by teachers at the high school, undergraduate, and graduate levels, focuses on the underlying mathematics necessary to use Sage efficiently and is illustrated with concrete examples. Part I is accessible to high school and undergraduate students and Parts II, III, and IV are suitable for graduate students, teachers, and researchers.
This book is available under a Creative Commons license at sagebook.gforge.inria.fr.
by "Nielsen BookData"