Algebraic geometry over C[∞]-rings
Author(s)
Bibliographic Information
Algebraic geometry over C[∞]-rings
(Memoirs of the American Mathematical Society, no. 1256)
American Mathematical Society, c2019
- Other Title
-
Algebraic geometry over C[infinity symbol]-rings
Available at 10 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
[∞] is superscript
"July 2019, volume 260, number 1256(fifth of 5 numbers)"
Includes bibliographical references and index
Description and Table of Contents
Description
If $X$ is a manifold then the $\mathbb R$-algebra $C^\infty (X)$ of smooth functions $c:X\rightarrow \mathbb R$ is a $C^\infty $-ring. That is, for each smooth function $f:\mathbb R^n\rightarrow \mathbb R$ there is an $n$-fold operation $\Phi _f:C^\infty (X)^n\rightarrow C^\infty (X)$ acting by $\Phi _f:(c_1,\ldots ,c_n)\mapsto f(c_1,\ldots ,c_n)$, and these operations $\Phi _f$ satisfy many natural identities. Thus, $C^\infty (X)$ actually has a far richer structure than the obvious $\mathbb R$-algebra structure.
The author explains the foundations of a version of algebraic geometry in which rings or algebras are replaced by $C^\infty $-rings. As schemes are the basic objects in algebraic geometry, the new basic objects are $C^\infty $-schemes, a category of geometric objects which generalize manifolds and whose morphisms generalize smooth maps. The author also studies quasicoherent sheaves on $C^\infty $-schemes, and $C^\infty $-stacks, in particular Deligne-Mumford $C^\infty$-stacks, a 2-category of geometric objects generalizing orbifolds.
Many of these ideas are not new: $C^\infty$-rings and $C^\infty $-schemes have long been part of synthetic differential geometry. But the author develops them in new directions. In earlier publications, the author used these tools to define d-manifolds and d-orbifolds, ``derived'' versions of manifolds and orbifolds related to Spivak's ``derived manifolds''.
Table of Contents
Introduction
$C^\infty$-rings
The $C^\infty$-ring $C^\infty (X)$ of a manifold $X$
$C^\infty $-ringed spaces and $C^\infty $-schemes
Modules over $C^\infty$-rings and $C^\infty $-schemes
$C^\infty $-stacks
Deligne-Mumford $C^\infty $-stacks
Sheaves on Deligne-Mumford $C^\infty $-stacks
Orbifold strata of $C^\infty $-stacks
Appendix A. Background material on stacks
Bibliography
Glossary of Notation
Index.
by "Nielsen BookData"