On the stability of type I blow up for the energy super critical heat equation
Author(s)
Bibliographic Information
On the stability of type I blow up for the energy super critical heat equation
(Memoirs of the American Mathematical Society, no. 1255)
American Mathematical Society, c2019
Available at 8 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"July 2019, volume 260, number 1255 (fourth of 5 numbers)"
Includes bibliographical reference
Description and Table of Contents
Description
The authors consider the energy super critical semilinear heat equation $\partial _{t}u=\Delta u u^{p}, x\in \mathbb{R}^3, p>5.$ The authors first revisit the construction of radially symmetric self similar solutions performed through an ode approach and propose a bifurcation type argument which allows for a sharp control of the spectrum of the corresponding linearized operator in suitable weighted spaces. They then show how the sole knowledge of this spectral gap in weighted spaces implies the finite codimensional nonradial stability of these solutions for smooth well localized initial data using energy bounds. The whole scheme draws a route map for the derivation of the existence and stability of self-similar blow up in nonradial energy super critical settings.
Table of Contents
Introduction
Construction of self-similar profiles
Spectral gap in weighted norms
Dynamical control of the flow
Appendix A. Coercivity estimates
Appendix B. Proof of (6.7)
Appendix C. Proof of Lemma 2.1
Appendix D. Proof of Lemma 2.2
Bibliography.
by "Nielsen BookData"