Clustering methodology for symbolic data
著者
書誌事項
Clustering methodology for symbolic data
(Wiley series in computational statistics)
Wiley, 2020
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Covers everything readers need to know about clustering methodology for symbolic data-including new methods and headings-while providing a focus on multi-valued list data, interval data and histogram data
This book presents all of the latest developments in the field of clustering methodology for symbolic data-paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses.
Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering.
Provides new classification methodologies for histogram valued data reaching across many fields in data science
Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis
Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data
Considers classification models by dynamical clustering
Features a supporting website hosting relevant data sets
Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.
目次
1 Introduction 1
2 Symbolic Data: Basics 7
2.1 Individuals, Classes, Observations, and Descriptions 8
2.2 Types of Symbolic Data 9
2.2.1 Multi-valued or Lists of Categorical Data 9
2.2.2 Modal Multi-valued Data 10
2.2.3 Interval Data 12
2.2.4 Histogram Data 13
2.2.5 Other Types of Symbolic Data 14
2.3 How do Symbolic Data Arise? 17
2.4 Descriptive Statistics 24
2.4.1 Sample Means 25
2.4.2 Sample Variances 26
2.4.3 Sample Covariance and Correlation 28
2.4.4 Histograms 31
2.5 Other Issues 38
Exercises 39
Appendix 41
3 Dissimilarity, Similarity, and Distance Measures 47
3.1 Some General Basic Definitions 47
3.2 Distance Measures: List or Multi-valued Data 55
3.2.1 Join and Meet Operators for Multi-valued List Data 55
3.2.2 A Simple Multi-valued Distance 56
3.2.3 Gowda-Diday Dissimilarity 58
3.2.4 Ichino-Yaguchi Distance 60
3.3 Distance Measures: Interval Data 62
3.3.1 Join and Meet Operators for Interval Data 62
3.3.2 Hausdorff Distance 63
3.3.3 Gowda-Diday Dissimilarity 68
3.3.4 Ichino-Yaguchi Distance 73
3.3.5 de Carvalho Extensisons of Ichino-Yaguchi Distances 76
3.4 Other Measures 79
Exercises 79
Appendix 82
4 Dissimilarity, Similarity, and Distance Measures: Modal Data 83
4.1 Dissimilarity/Distance Measures: Modal Multi-valued List Data 83
4.1.1 Union and Intersection Operators for Modal Multi-valued List Data 84
4.1.2 A Simple Modal Multi-valued List Distance 85
4.1.3 Extended Multi-valued List Gowda-Diday Dissimilarity 87
4.1.4 Extended Multi-valued List Ichino-Yaguchi Dissimilarity 90
4.2 Dissimilarity/Distance Measures: Histogram Data 93
4.2.1 Transformation of Histograms 94
4.2.2 Union and Intersection Operators for Histograms 98
4.2.3 Descriptive Statistics for Unions and Intersections 101
4.2.4 Extended Gowda-Diday Dissimilarity 104
4.2.5 Extended Ichino-Yaguchi Distance 108
4.2.6 Extended de Carvalho Distances 112
4.2.7 Cumulative Density Function Dissimilarities 115
4.2.8 Mallows' Distance 117
Exercises 118
5 General Clustering Techniques 119
5.1 Brief Overview of Clustering 119
5.2 Partitioning 120
5.3 Hierarchies 125
5.4 Illustration 131
5.5 Other Issues 146
6 Partitioning Techniques 149
6.1 Basic Partitioning Concepts 150
6.2 Multi-valued List Observations 153
6.3 Interval-valued Data 159
6.4 Histogram Observations 169
6.5 Mixed-valued Observations 177
6.6 Mixture Distribution Methods 179
6.7 Cluster Representation 186
6.8 Other Issues 189
Exercises 191
Appendix 193
7 Divisive Hierarchical Clustering 197
7.1 Some Basics 197
7.1.1 Partitioning Criteria 197
7.1.2 Association Measures 200
7.2 Monothetic Methods 203
7.2.1 Modal Multi-valued Observations 205
7.2.2 Non-modal Multi-valued Observations 214
7.2.3 Interval-valued Observations 216
7.2.4 Histogram-valued Observations 225
7.3 Polythethic Methods 236
7.4 Stopping Rule R 250
7.5 Other Issues 257
Exercises 258
8 Agglomerative Hierarchical Clustering 261
8.1 Agglomerative Hierarchical Clustering 261
8.1.1 Some Basic Definitions 261
8.1.2 Multi-valued List Observations 266
8.1.3 Interval-valued Observations 269
8.1.4 Histogram-valued Observations 278
8.1.5 Mixed-valued Observations 281
8.1.6 Interval Observations with Rules 282
8.2 Pyramidal Clustering 289
8.2.1 Generality Degree 289
8.2.2 Pyramid Construction Based on Generality Degree 297
8.2.3 Pyramids from Dissimilarity Matrix 309
8.2.4 Other Issues 312
Exercises 313
Appendix 315
References 317
Index 331
「Nielsen BookData」 より