A local relative trace formula for the Ginzburg-Rallis model : the geometric side

著者

    • Wan, Chen

書誌事項

A local relative trace formula for the Ginzburg-Rallis model : the geometric side

Chen Wan

(Memoirs of the American Mathematical Society, no. 1263)

American Mathematical Society, c2019

大学図書館所蔵 件 / 8

この図書・雑誌をさがす

注記

"September 2019, volume 261, number 1263 (seventh of 7 numbers)"

Includes bibliographical reference (p. 89-90)

内容説明・目次

内容説明

Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case.

目次

Introduction and main result Preliminarities Quasi-characters Strongly cuspidal functions Statement of the Trace formula Proof of Theorem 1.3 Localization Integral transfer Calculation of the limit $\lim _N\rightarrow \infty I_x,\omega ,N(f)$ Proof of Theorem 5.4 and Theorem 5.7 Appendix A. The proof of Lemma 9.1 and Lemma 9.11 Appendix B. The reduced model Appendix B. The reduced model Bibliography.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB29356227
  • ISBN
    • 9781470436865
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    v, 90 p.
  • 大きさ
    26 cm
  • 親書誌ID
ページトップへ