A local relative trace formula for the Ginzburg-Rallis model : the geometric side
著者
書誌事項
A local relative trace formula for the Ginzburg-Rallis model : the geometric side
(Memoirs of the American Mathematical Society, no. 1263)
American Mathematical Society, c2019
大学図書館所蔵 件 / 全8件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"September 2019, volume 261, number 1263 (seventh of 7 numbers)"
Includes bibliographical reference (p. 89-90)
内容説明・目次
内容説明
Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case.
目次
Introduction and main result
Preliminarities
Quasi-characters
Strongly cuspidal functions
Statement of the Trace formula
Proof of Theorem 1.3
Localization
Integral transfer
Calculation of the limit $\lim _N\rightarrow \infty I_x,\omega ,N(f)$
Proof of Theorem 5.4 and Theorem 5.7
Appendix A. The proof of Lemma 9.1 and Lemma 9.11
Appendix B. The reduced model
Appendix B. The reduced model
Bibliography.
「Nielsen BookData」 より