Atomicity through fractal measure theory : mathematical and physical fundamentals with applications
著者
書誌事項
Atomicity through fractal measure theory : mathematical and physical fundamentals with applications
Springer, c2019
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book presents an exhaustive study of atomicity from a mathematics perspective in the framework of multi-valued non-additive measure theory. Applications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, applications of these concepts are brought to light in the study of the dynamics of complex systems.
The first chapter prepares the basics for the next chapters. In the last chapter, applications of atomicity in quantum physics are developed and new concepts, such as the fractal atom are introduced. The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potential applications in life sciences, are opened.
目次
Preface.- 1. Short hypertopologies. A short overview.- 2. A Mathematical-physical approach on regularity in hit-and-miss hypertologies for fuzzy set multifunctions.- 3. Non-atomic set multifunctions.- 4. Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions.- 5. Atoms and pseudo-atoms for set multifunctions.- 6. Gould integrability on atoms for set multifunctions.- 7. Continuity properties and the Alexandroff theorem in Vietoris topology.- 8. Approximation theorems for fuzzy set multifunctions in Vietoris topology. Physical implications of regularity- 9. Atomicity via regularity for non-additive set malfunctions.- 10. Extended atomicity through non-differentiability and its physical implications.- 11. On a multifractal theory of motion in a non-differentiable space. Toward a possible multifractal theory of measure.- List of symbols.- Index.
「Nielsen BookData」 より