Boundary Synchronization for Hyperbolic Systems
著者
書誌事項
Boundary Synchronization for Hyperbolic Systems
(Progress in nonlinear differential equations and their applications / editor, Haim Brezis, v. 94)
Birkhäuser, c2019
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 325-328) and index
内容説明・目次
内容説明
Within this carefully presented monograph, the authors extend the universal phenomenon of synchronization from finite-dimensional dynamical systems of ordinary differential equations (ODEs) to infinite-dimensional dynamical systems of partial differential equations (PDEs). By combining synchronization with controllability, they introduce the study of synchronization to the field of control and add new perspectives to the investigation of synchronization for systems of PDEs. With a focus on synchronization for a coupled system of wave equations, the text is divided into three parts corresponding to Dirichlet, Neumann, and coupled Robin boundary controls. Each part is then subdivided into chapters detailing exact boundary synchronization and approximate boundary synchronization, respectively. The core intention is to give artificial intervention to the evolution of state variables through appropriate boundary controls for realizing the synchronization in a finite time, creating a novel viewpoint into the investigation of synchronization for systems of partial differential equations, and revealing some essentially dissimilar characteristics from systems of ordinary differential equations.
Primarily aimed at researchers and graduate students of applied mathematics and applied sciences, this text will particularly appeal to those interested in applied PDEs and control theory for distributed parameter systems.
目次
Introduction and Overview.- Preliminaries.- Part 1: Synchronization for a Coupled System of Wave Equations with Dirichlet Boundary Controls: Exact Boundary Synchronization.- Exact boundary controllability and non-exact boundary controllability.- Exact boundary synchronization and non-exact boundary synchronization.- Exactly synchronizable states.- Exact boundary synchronization by groups.- Exactly synchronizable states by p-groups.- Part 2: Synchronization for a Coupled System of Wave Equations with Dirichlet Boundary Controls: Approximate Boundary Synchronization.- Approximate boundary synchronization.- Approximate boundary synchronization by p-groups.- Induced approximate boundary synchronization.- Part 3: Synchronization for a Coupled System of Wave Equations with Neumann Boundary Controls: Exact Boundary Synchronization.- Exact boundary controllability and non-exact boundary controllability.- Exact boundary synchronization and non-exactly boundary synchronization.- Exact boundary synchronization by p-groups.- Determination of exactly synchronizable states by p-groups.- Part 4: Synchronization for a Coupled System of Wave Equations with Neumann Boundary Controls: Approximate Boundary Synchronization.- Approximate boundary null controllability.- Approximate boundary synchronization.- Approximate Boundary Synchronization by p-groups.- Part 5: Synchronization for a Coupled System of Wave Equations with Coupled Robin Boundary Controls: Exact Boundary Synchronization.- Preliminaries on problem (III) and (III0).- Exact boundary controllability and non-exact boundary controllability.- Exact boundary synchronization.- Determination of exactly synchronizable states.- Exact boundary synchronization by p-groups.- Necessity of the conditions of Cp-compatibility.- Determination of exactly synchronizable states by p-groups.- Part 6. Synchronization for a Coupled System of Wave Equations with Coupled Boundary Controls: Approximate Boundary Synchronization.- Some algebraic lemmas.- Approximate boundary null controllability.- Unique continuation for Robin problem.- Approximate boundary synchronization.- Approximate boundary synchronization by p-groups.- Approximately synchronizable states by p-groups.- Closing remarks.
「Nielsen BookData」 より