Hodge ideals
著者
書誌事項
Hodge ideals
(Memoirs of the American Mathematical Society, no. 1268)
American Mathematical Society, c2019
大学図書館所蔵 件 / 全9件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"November 2019, volume 262, number 1268 (fifth of 7 numbers)"
Includes bibliographical reference (p. 79-80)
内容説明・目次
内容説明
The authors use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. They analyze their local and global properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements.
目次
Introduction
Preliminaries
Saito's Hodge filtration and Hodge modules
Birational definition of Hodge ideals
Basic properties of Hodge ideals
Local study of Hodge ideals
Vanishing theorems
Vanishing on $\mathbf{P} ^n$ and abelian varieties, with applications
Appendix: Higher direct images of forms with log poles
References.
「Nielsen BookData」 より