書誌事項

Hodge ideals

Mircea Mustaţă, Mihnea Popa

(Memoirs of the American Mathematical Society, no. 1268)

American Mathematical Society, c2019

この図書・雑誌をさがす
注記

"November 2019, volume 262, number 1268 (fifth of 7 numbers)"

Includes bibliographical reference (p. 79-80)

内容説明・目次

内容説明

The authors use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. They analyze their local and global properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements.

目次

Introduction Preliminaries Saito's Hodge filtration and Hodge modules Birational definition of Hodge ideals Basic properties of Hodge ideals Local study of Hodge ideals Vanishing theorems Vanishing on $\mathbf{P} ^n$ and abelian varieties, with applications Appendix: Higher direct images of forms with log poles References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BB29722813
  • ISBN
    • 9781470437817
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    v, 80 p.
  • 大きさ
    26 cm
  • 親書誌ID
ページトップへ