The shape of space
著者
書誌事項
The shape of space
(Textbooks in mathematics)
CRC Press, c2020
3rd ed
- : hardback
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"A Chapman & Hall book"
Includes bibliographical references and index
内容説明・目次
内容説明
The Shape of Space, Third Edition maintains the standard of excellence set by the previous editions. This lighthearted textbook covers the basic geometry and topology of two- and three-dimensional spaces-stretching students' minds as they learn to visualize new possibilities for the shape of our universe.
Written by a master expositor, leading researcher in the field, and MacArthur Fellow, its informal exposition and engaging exercises appeal to an exceptionally broad audience, from liberal arts students to math undergraduate and graduate students looking for a clear intuitive understanding to supplement more formal texts, and even to laypeople seeking an entertaining self-study book to expand their understanding of space.
Features of the Third Edition:
Full-color figures throughout
"Picture proofs" have replaced algebraic proofs
Simpler handles-and-crosscaps approach to surfaces
Updated discussion of cosmological applications
Intuitive examples missing from many college and graduate school curricula
About the Author:
Jeffrey R. Weeks is a freelance geometer living in Canton, New York. With support from the U.S. National Science Foundation, the MacArthur Foundation and several science museums, his work spans pure mathematics, applications in cosmology and-closest to his heart-exposition for the general public.
目次
Part I Surfaces and Three-Manifolds
Flatland
Gluing
Vocabulary
Orientability
Classification of Surfaces
Products
Flat Manifolds
Orientability vs. Two-Sidedness
Part II Geometries on Surfaces
The Sphere
The Hyperbolic Plane
Geometries on Surfaces
Gauss-Bonnet Formula and Euler Number
Part III Geometries on Three-Manifolds
Four-Dimensional Space
The Hypersphere
Hyperbolic Space
Geometries on Three-Manifolds I
Bundles
Geometries on Three-Manifolds II
Part IV The Universe
The Universe
The History of Space
Appendix A: Answers
Appendix B: Bibliography
Appendix C: Conway's ZIP Proof
「Nielsen BookData」 より