Linear algebra for computer vision, robotics, and machine learning
著者
書誌事項
Linear algebra for computer vision, robotics, and machine learning
(Linear algebra and optimization with applications to machine learning, v. 1)
World Scientific, c2020
大学図書館所蔵 件 / 全9件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 791-794) and index
内容説明・目次
内容説明
This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.
「Nielsen BookData」 より