Tensor products of C*-algebras and operator spaces : the Connes-Kirchberg problem
著者
書誌事項
Tensor products of C*-algebras and operator spaces : the Connes-Kirchberg problem
(London Mathematical Society student texts, 96)
Cambridge University Press, 2020
- : hbk
- : pbk
大学図書館所蔵 全17件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 470-481) and index
内容説明・目次
内容説明
Based on the author's university lecture courses, this book presents the many facets of one of the most important open problems in operator algebra theory. Central to this book is the proof of the equivalence of the various forms of the problem, including forms involving C*-algebra tensor products and free groups, ultraproducts of von Neumann algebras, and quantum information theory. The reader is guided through a number of results (some of them previously unpublished) revolving around tensor products of C*-algebras and operator spaces, which are reminiscent of Grothendieck's famous Banach space theory work. The detailed style of the book and the inclusion of background information make it easily accessible for beginning researchers, Ph.D. students, and non-specialists alike.
目次
- Introduction
- 1. Completely bounded and completely positive maps: basics
- 2. Completely bounded and completely positive maps: a tool kit
- 3. C*-algebras of discrete groups
- 4. C*-tensor products
- 5. Multiplicative domains of c.p. maps
- 6. Decomposable maps
- 7. Tensorizing maps and functorial properties
- 8. Biduals, injective von Neumann algebras and C*-norms
- 9. Nuclear pairs, WEP, LLP and QWEP
- 10. Exactness and nuclearity
- 11. Traces and ultraproducts
- 12. The Connes embedding problem
- 13. Kirchberg's conjecture
- 14. Equivalence of the two main questions
- 15. Equivalence with finite representability conjecture
- 16. Equivalence with Tsirelson's problem
- 17. Property (T) and residually finite groups. Thom's example
- 18. The WEP does not imply the LLP
- 19. Other proofs that C(n) < n. Quantum expanders
- 20. Local embeddability into ${\mathscr{C}}$ and non-separability of $(OS_n, d_{cb})$
- 21. WEP as an extension property
- 22. Complex interpolation and maximal tensor product
- 23. Haagerup's characterizations of the WEP
- 24. Full crossed products and failure of WEP for $\mathscr{B}\otimes_{\min}\mathscr{B}$
- 25. Open problems
- Appendix. Miscellaneous background
- References
- Index.
「Nielsen BookData」 より