An elementary recursive bound for effective positivstellensatz and hilbert's 17th problem

著者

書誌事項

An elementary recursive bound for effective positivstellensatz and hilbert's 17th problem

Henri Lombardi, Daniel Perrucci, Marie-Francoise Roy

(Memoirs of the American Mathematical Society, no. 1277)

American Mathematical Society, c2020

大学図書館所蔵 件 / 6

この図書・雑誌をさがす

注記

"January 2020, volume 263, number 1277 (seventh of 7 numbers)"

Includes bibliographical reference (p. 123-125)

内容説明・目次

内容説明

The authors prove an elementary recursive bound on the degrees for Hilbert's 17th problem. More precisely they express a nonnegative polynomial as a sum of squares of rational functions and obtain as degree estimates for the numerators and denominators the following tower of five exponentials $ 2^{ 2^{ 2^{d^{4^{k}}} } } $ where $d$ is the number of variables of the input polynomial. The authors' method is based on the proof of an elementary recursive bound on the degrees for Stengle's Positivstellensatz. More precisely the authors give an algebraic certificate of the emptyness of the realization of a system of sign conditions and obtain as degree bounds for this certificate a tower of five exponentials, namely $ 2^{ 2^{\left(2^{\max\{2,d\}^{4^{k}}}+ s^{2^{k}}\max\{2, d\}^{16^{k}{\mathrm bit}(d)} \right)} } $ where $d$ is a bound on the degrees, $s$ is the number of polynomials and $k$ is the number of variables of the input polynomials.

目次

Introduction Weak inference and weak existence Intermediate value theorem Fundamental theorem of algebra Hermite's theory Elimination of one variable Proof of the main theorems Bibliography/References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB30523789
  • ISBN
    • 9781470441081
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    v, 125 p.
  • 大きさ
    26 cm
  • 親書誌ID
ページトップへ