Rigid character groups, lubin-tate theory, and (φ,Γ)-modules

著者

    • Berger, Laurent
    • Schneider, Peter
    • Xie, Bingyong

書誌事項

Rigid character groups, lubin-tate theory, and (φ,Γ)-modules

Laurent Berger, Peter Schneider, Bingyong Xie

(Memoirs of the American Mathematical Society, no. 1275)

American Mathematical Society, c2020

大学図書館所蔵 件 / 6

この図書・雑誌をさがす

注記

"January 2020, volume 263, number 1275 (fifth of 7 numbers)"

Includes bibliographical reference (p. 77-79)

内容説明・目次

内容説明

The construction of the $p$-adic local Langlands correspondence for $\mathrm{GL}_2(\mathbf{Q}_p)$ uses in an essential way Fontaine's theory of cyclotomic $(\varphi ,\Gamma )$-modules. Here cyclotomic means that $\Gamma = \mathrm {Gal}(\mathbf{Q}_p(\mu_{p^\infty})/\mathbf{Q}_p)$ is the Galois group of the cyclotomic extension of $\mathbf Q_p$. In order to generalize the $p$-adic local Langlands correspondence to $\mathrm{GL}_{2}(L)$, where $L$ is a finite extension of $\mathbf{Q}_p$, it seems necessary to have at our disposal a theory of Lubin-Tate $(\varphi ,\Gamma )$-modules. Such a generalization has been carried out, to some extent, by working over the $p$-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic $(\varphi ,\Gamma )$-modules in a different fashion. Instead of the $p$-adic open unit disk, the authors work over a character variety that parameterizes the locally $L$-analytic characters on $o_L$. They study $(\varphi ,\Gamma )$-modules in this setting and relate some of them to what was known previously.

目次

Introduction Lubin-Tate theory and the character variety The boundary of $\mathfrak{X}$ and $(\varphi_{L},\Gamma_{L})$-modules Construction of $(\varphi_{L},\Gamma_{L})$-modules.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB30523869
  • ISBN
    • 9781470440732
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    v, 79 p.
  • 大きさ
    26 cm
  • 親書誌ID
ページトップへ