Geometric optics for surface waves in nonlinear elasticity
著者
書誌事項
Geometric optics for surface waves in nonlinear elasticity
(Memoirs of the American Mathematical Society, no. 1271)
American Mathematical Society, c2020
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"January 2020, volume 263, number 1271 (first of 7 numbers)"
Includes bibliographical reference (p. 149-151)
内容説明・目次
内容説明
This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an approximate Rayleigh wave solution to the underlying elasticity equations. This evolution equation, which is referred to as ``the amplitude equation'', is an integrodifferential equation of nonlocal Burgers type. The authors begin by reviewing and providing some extensions of the theory of the amplitude equation. The remainder of the paper is devoted to a rigorous proof in 2D that exact, highly oscillatory, Rayleigh wave solutions $u^{\varepsilon} $ to the nonlinear elasticity equations exist on a fixed time interval independent of the wavelength $\varepsilon $, and that the approximate Rayleigh wave solution provided by the analysis of the amplitude equation is indeed close in a precise sense to $u^{\varepsilon}$ on a time interval independent of $\varepsilon $. This paper focuses mainly on the case of Rayleigh waves that are pulses, which have profiles with continuous Fourier spectrum, but the authors' method applies equally well to the case of wavetrains, whose Fourier spectrum is discrete.
目次
General introduction
Derivation of the weakly nonlinear amplitude equation
Existence of exact solutions
Approximate solutions
Error Analysis and proof of Theorem 3.8
Some extensions
Appendix A. Singular pseudodifferential calculus for pulses
Bibliography.
「Nielsen BookData」 より