Quasi-periodic standing wave solutions of gravity-capillary water waves
著者
書誌事項
Quasi-periodic standing wave solutions of gravity-capillary water waves
(Memoirs of the American Mathematical Society, no. 1273)
American Mathematical Society, c2020
大学図書館所蔵 件 / 全7件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"January 2020, volume 263, number 1273 (third of 7 numbers)"
Includes bibliographical reference (p. 169-171)
内容説明・目次
内容説明
The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable $x$) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure.
目次
Introduction and main result
Functional setting
Transversality properties of degenerate KAM theory
Nash-Moser theorem and measure estimates
Approximate inverse
The linearized operator in the normal directions
Almost diagonalization and invertibility of $\mathcal{L}_{\omega}$
The Nash-Moser iteration
Appendix A. Tame estimates for the flow of pseudo-PDEs
Bibliography.
「Nielsen BookData」 より