Quasi-periodic standing wave solutions of gravity-capillary water waves

著者

書誌事項

Quasi-periodic standing wave solutions of gravity-capillary water waves

Massimiliano Berti, Riccardo Montalto

(Memoirs of the American Mathematical Society, no. 1273)

American Mathematical Society, c2020

大学図書館所蔵 件 / 7

この図書・雑誌をさがす

注記

"January 2020, volume 263, number 1273 (third of 7 numbers)"

Includes bibliographical reference (p. 169-171)

内容説明・目次

内容説明

The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable $x$) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure.

目次

Introduction and main result Functional setting Transversality properties of degenerate KAM theory Nash-Moser theorem and measure estimates Approximate inverse The linearized operator in the normal directions Almost diagonalization and invertibility of $\mathcal{L}_{\omega}$ The Nash-Moser iteration Appendix A. Tame estimates for the flow of pseudo-PDEs Bibliography.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB30523982
  • ISBN
    • 9781470440695
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    v, 171 p.
  • 大きさ
    26 cm
  • 親書誌ID
ページトップへ